返回首页

磁场与电流的关系?

275 2023-11-04 08:42 admin   手机版

一、磁场与电流的关系?

电流于磁场,闭合的线圈切割磁感线形成电流。通有电流的长直导线周围产生的磁场,在通电流的长直导线周围,会有磁场产生,其磁感线的形状为以导线为圆心一封闭的同心圆,且磁场的方向与电流的方向互相垂直。

电流产生磁场,变化的磁场产生电流,变化的磁场可以是从外部施加的,例如一个运动的磁铁、变压器的输入端等,可以来自磁场的消失。电流和磁场是紧密相连的。

二、电流怎么产生磁场的?

这个由是由于电场力移动在刘子形成的电流能产生磁场是事实,他们合起来作为同一种东西,就会产生磁场,这是电与磁密不可分的表现

三、电流对磁场的作用?

对其中的运动电荷施加作用力,从而改变电流的方向。磁场是存在于磁体、电流和运动电荷周围空间的一种特殊形态的物质,是一种矢量场,在空间里的任意位置都具有方向和数值大小。

在电磁学里,磁石、磁铁、电流及含时电场,都会产生磁场。

处于磁场中的磁性物质或电流,会因为磁场的作用而感受到磁力,因而显示出磁场的存在。

磁铁与磁铁之间,通过各自产生的磁场,互相施加作用力和力矩于对方。运动中的电荷亦会产生磁场。

四、电流怎么产生磁场?

怎么形成导体电流

做切割磁力线运动的导体产生电流的原因,它是三个因素结合而成的结果。其一是导体上的原子核外带负电的电子;其二导体受到的外动力并且力的方向垂直于磁力线方向;其三是磁力线。导体产生电流主要原因是组成磁力线的微体核能,该核能上有双扇子形薄片和中间凸起的圆形薄片,这两个薄片垂直相交,交线段为双扇子形中间部位的中心线段和中间凸起的圆形薄片的直径。这个重合线段既是中凸圆交电力线的直径也是扇子形电力线的正中间线段,它们是相等的。这两个相垂直薄片都是按一定规律排列成的电力线,其中圆形薄片是一个中间凸起的曲面圆交电力线,它是由圆心发出的正负相邻均匀排列的电力线并组成的中间凸起的曲面圆,这些电力线都交于圆心,叫中凸圆交电力线,无论正或负电力线的方向都朝圆心吸,圆片上间夹着的正电力线对稍微加力的导体上带负电电子产生异性相吸,使电子吸到圆片电力线的圆心区域,此时的电子既受圆片上正电力线朝圆心的吸力,又受到加在导体运动的外力带动导体的电子稍微动些,这两个力使电子移动到圆片电力线的圆心区域,当电子到达水平的圆片电力线的圆心区域时,就立刻被此处的扇子形平行电力线向上的正电电力,将电子推到该电力线顶端并且进行排列成扇子形的电子波。

各因素的方向

导体做垂直切割磁力线运动力的方向垂直于磁力线,若这个使导体运动的动力线方向,能与组成磁力线核能上的双扇子形平面垂直时,为最佳动力线方向。由于组成磁力线上核能的中凸圆交电力线平面垂直于双扇子形电力线,所以使导体运动的动力线方向,几乎平行或重合于中凸圆交电力线平面,同样也是选择的最佳动力线方向,这样可知使导体运动的动力线方向与磁力线垂直;动力线方向与核能上的双扇子形电力线平面垂直;动力线与核能上的中凸圆交电力线平面平行或重合;动力线与双扇子形电力线平面上排列的扇形电子波仍然垂直。动力线在这里相当于一组平行线,其宽度等于磁力线范围尺度,长度等于导体的运动距离,厚度等于导体直径。由于平行动力线能使导体上的电子稍微动些,这说明动力线是不显电性的电力线即隐形电力线,其电量特小。若导体放在磁力线里保持静止状态,导体是不会产生电流的,若运动就会产生电流这说明,组成磁力线核能的圆片上的正电力线吸引稍微加力电子移动到它圆心,再由双扇子形平行电力线向上推送电子排列成扇子形电子波,该波平面垂直于动力线并且重合或平行于磁力线。在穿过导体的整齐磁力线上排列着扇子形电子波,波与波下底直线相连,并且朝动力线(导体运动方向)右侧直线运动。从这里可以看到两个相互垂直的隐形(不显电性)电力线即动力线与磁力线产生一个与它们两都垂直的显性电力线(在导体上),这个电力线方向在动力线右侧,该电力线(在导体上存在)上排列着双扇子形电子波串并且沿着电力线方向运动,这就是说两个隐形电力线产生了一个显性电力线,构成三线垂直。实质是磁力线垂直方向上,加定方向的动力线,定向动力线上加直线形导线,并且沿着动力线的垂直方向运动,直线形导线上产生垂直于动力线的电力线,这些电力线产生原因是,穿过导体的组成磁力线的核能上的圆片电力线向圆心吸导体上的电子,双扇子形电力线将这些吸到圆心区域的电子,在它的上面排列成双扇子形电子波,本身磁力线整齐排列的,那么它形成的波同样也是整齐排列的,这些电子波平面原本是正平行电力线上排列着的电子,这些成平面的负电电子自然就会倾斜一方向,内层的平行正电力线同样也倾斜相对的另一方向(这是电的方向性规律引起的),在这里正电朝导体运动方向的右侧,那么负电自然是导体运动方向的左侧,这就成为扇子形电极,这些电极串在处在磁力线范围内的导体上形成一个大电极,即导体右端为正极,左端为负极。正电极与处在磁力线以外导体上的原子核外电子之间自然出现异性相吸,由于原子核对电子的吸引力远远超过了正电极对电子的吸引力,所以正电极受到电子吸力进行移动,负电极受到原子核上的电子推斥力作用,同样背离电子移动,这样电极两端的吸推两个同向力,使扇子形电子波体在导体上运动。

三种相垂直电力线

动力线垂直磁力线也垂直电力线(导体上)。动力线是立体平行隐形电线;磁力线是立体平行隐形电力线;电力线是立体平行电子波串。动力线上的隐形电量比磁力线隐形电量大些,电力线上的电量就是立体平行的电子波串它是显性的大电量与磁力线的电量的的不可比拟。这些说明了在做切割磁力线运动的导体,用的两个垂直的隐形电力线,产生垂直于动力线并且为显性电的电子波(相当于磁力线范围的导体电流)。导体上的电子波平面垂直于组成磁力线核能上的中凸圆交电力线平面,与导体运动方向上的平行动力线垂直;与双扇子形平行电力线平面重合或平行。在磁力线范围的运动导体产生电子波形的电流方向,永远在导体运动方向的右侧。

动力线与磁力线产生电子波

动力线垂直于双扇子形电力线平面,这样中凸圆交电力线向四面八方吸电子到其圆心区域,但是顺动力线方向吸的电子比四面八方吸的电子的力稍微大些,这样有利于电子到达扇子形平面底处,并且向上推送电子进行排列成双扇子形电子波。再加上能使扇子形在导体上占有整齐不脱导体边位置。具体的是吸来的电子直接进入扇子形与圆形交线中心处,由于扇子形平面对电子的吸力,使吸到中心处的电子,在交线上以中间向两旁稍微散开些,并且顺着垂直方向上的扇子形平行电力线向上推送电子,使电子到达扇子形顶端排列成扇子形模样,又由于扇子形本身就像波,所以叫扇形电子波。

电流最大值对应的动力方向

导体在磁力线垂直方向上做切割磁力线运动,导体与磁力线的关系是,导体受到的外动力线方向既垂直于磁力线;并且还要与组成磁力线核能上的中凸圆交电力线平面平行,或经过该平面;还要与组成磁力线核能上的双扇子形平面垂直,符合这条件下的运动状态的导体,所受的动力方向才是最佳选择。它们的原因是扇子形电力线平面垂直于中凸圆形电力线平面并且从中间垂直相交于线段,该线段既是扇子形中间线段又是中凸圆形直径。由于中凸圆交电力线是正负相邻均匀排列的,所以在它的平面电力线范围内,向四面八方的位置上,存在着无数个相交电力线朝圆心的吸力,对稍微加力的正电粒子或稍微加力的负电粒子,都能使它顺着对应的异性电力线运动到其圆心区域,在这里中凸圆交电力线上的正电力线,对导体上的加同向力的电子产生吸引,使电子顺着中凸圆交正电力线快速移动到其圆心区域,这是单纯的中凸圆交电力线能使稍微加力的电子运动规律。

电子波形成原理

对于切割磁力线运动的导体上最简单的力,就是平行定长度的动力线,推动导体在垂直磁力线方向上运动,导体上的原子核外围电子自然随着该力出现受力趋势,相当于稍微加力的电子。导体进入磁力内,实质上是磁力线穿入导体上,那么组成磁力核能上的圆片正电力线向四面八方吸收稍微加力的电子,使它们飞般的到达圆心区域,通过圆心直径上的双扇子形平行电力线,将身边的电子迅速推到双扇子形顶端,进行从上向下排列成扇子模样,这就是电子波,由于每根磁力上由无数个单体核能组成的,每个单体核能都含有着一个双扇子形平行电力线,若处在导体体积上所有磁力线上的双扇子形平行电力线上,都排列上电子波,对于每个正电力线的扇子形平面上全部是电子排列的,该电子面的电力相当大,由于带电体或带电面有一规律,即带电体或带电面上的电会自然分开,形成电量相等的两极,这是因为面内层是正电力线的正电,外层是电子上的负电,所以电子排列的双扇子形电子波从双扇子形中间分开为两极,电子稍微倾向后面显出负电,正电力线稍微线倾向前面显出负电,同一平面上的扇子形电子波行列同行列,首尾异性相吸成串。这就是做切割磁力线运动导体上的电子波串形成原理。

电子波的方向

电子波的底是直线相连的。起初在每根磁力线上,按照它上面的扇子形状排列的电子波,由于扇子形平面垂直于导体的运动力线,所以扇子形平面上排列的电子波同样也垂直于导体的运动力方向,电子波在导体相连的长度恰巧是导体处在磁力线上范围的宽度,并且也是推动导体的平行动力线的宽度,这就是磁力线范围处的导体上排列成的相连的电子波。

导体电子波的运动方向

当处在磁力线区域的导体上全部排列成有规律的整体电子波串行列时,由于各个单波相当于一个微小电极,正电极总是在切割磁力线运动力方向的右侧,这样它们连成的整体串同样也分正负电两极,正电极同样也在切割磁力线运动力方向的右侧时,对于处在磁力线范围的那部分导体成为整体的大电极,这个大电极的正电极仍然在切割磁力线运动力方向的右侧,这部分导体两端成正负电极,电力相当大,在离开磁力线范围的导体上,对靠近正电极的原子核外电子产生很大的吸力,由于原子核外电子不能挣脱原子核对它的吸力,它们之间的吸力,使正电极向电子方向运动;对靠近负电极的原子核外电子产生很大的排斥力,对负电极起到推动作用,这就是同性相斥异性相吸规律,产生了后面的负电极受到推力,前面的正电极受到靠前的电子吸力,并且吸力与吸推力作用在同一整体大电极的首尾,这样使电子波组合体在磁力线范围导体上运动。这就是磁力线范围的导体电流。

曲面圆交电力线怎样吸电子

由于这个曲面圆片上无数个电力线和其对应的四面八方无数个朝圆心吸力方向,这些电力线全部与磁力线方向垂直,所以对导体加力的电子就沿着垂直于磁力线方向的圆片的圆心移动,此时电子受到两种作用,即导体受的外力,引起导体的电子稍微加力,圆片上的无数方向正电力线就要四面八方向圆心吸这些加力电子到其圆心区域,此时的电子立即被其垂直方向上的平行扇子形正电力线,将电子推送到扇子形顶端并且按照扇子形状进行排列,排列成一连串贴在磁力线上的双扇子形电子波并且下面为直线形。

为啥叫扇子形电力线

双扇子形电力线薄片的两个扇子各自中间部分稍长些,才叫它扇子形的平行电力线,它们这两个扇子并列在一起组成双扇子形电力线,从与它相交的圆面直径为界,向上部分扇子形平行线为正电力线,并且方向朝上,向下部分电力线为负电力线,并且方向朝下,底下是连着的两个弧形线段,由于双扇子形电力线的下方为负电力线,它与带负电的电子是排斥作用,不能排列电子,只有上方的正扇子形电力线排列电子。由于这个微小双扇子形平行电力线的上下为异性电,所以这些微体接触时就会首尾异性相吸成串,这就是磁力线,这也是它能连成磁力线的第一个作用。它的第二个作用,就是双扇子形向上的正电力线,对穿着磁力线的导体上的带负电电子进行排列成电子波。具体的是将电子吸到双扇子顶端,进行从上往下排列到正负分界线位为止,排列成的电子波上为双扇子形状下为直线形。这就是平面电子波。

曲面螺旋形电流

电子波在导体上运动,只要离开磁力线的导体,电子波就不受磁力线的束博力,就会翻劲成曲面螺旋形状仍然运动,并且绕着导体中心线运动,这个圆形螺旋体积几乎与导体体积全等或小于导体的体积。

导体电子三次运动

起初导体做垂直切割磁力线运动的方向,导体的电子顺正电力线方向移动到圆片电力线的圆心区域这是电子第一次运动,再由扇子形正电力线向上推力,使导体的电子出现第二次向上移动,移动方向与导体运动方向相垂直,当电子移动到扇子形顶端时按规律排列成波,波出现两极,磁力线以外的导体上的电子,对波的正极相吸对负极相斥,这样电子波正极受电子吸引运动,这就是磁力线范围的电流方向,它永远在导体运动方向的右边,这是导体上排列的波形电子运动,这属于导体电子的第三次移动。

电形状的性质

正负异性电除了具有本能性即异性相吸与同性相斥外还有,电的形状性质,若点电,是微小圆柱平行电力线和它外套的无数方向的球交电力线组成的微体,电线交于球心,并且正负相邻均匀掺杂排列,它是不定的方向;正电电力线或负电力线电力线(指单性),具有一定的长度和方向,它是某种点电连成的串,若它与异性不相等的电相吸,仍然保持着线形状,它就会形成上下两极,两极电的正负性是靠产生原因确定的,比如做垂直切割磁力线运动的直线导体上,排列的扇子形电子波面的正负极,它是在双扇子形的平面平行正电力线的每根电力线,吸上带负电的电子自然排列成电子串,排列成的各个电子串组合仍然是平面,但是双扇子形平行正电力线的电量与它上面排列的所有电子的电量是不相等的,此时正平行电力线面就要向动力线的右侧倾向,负电的双扇子电子面就要向动力线左侧倾向,这是规律,再比如旋转力使正负电粒子旋转运动,以旋转面为界限,正电粒子向上发出正电力线,负电粒子发出负电力线,并且正负电力线方向相反,这就是旋转力使粒子产生立体平行电力线,分上下两极它的细节是,旋转力方向确定正负电极的位置,若旋转动力是顺时针,以时针面为界面,正电力线在时针背面,负电力线在时针正面,这是正负电粒子随运动力产生电极的规律,做切割磁力线运动导体上排列成的电子波平面同样实施,在这里导体运动瞬间排好电子波,导体仍然运动着相当于时针在短时间的直线运动,那么这些排好的电子波就会在时针背面形成负电极,时针正面形成正电极。产生电极的原因对磁力线无关系,磁力线在磁力产电过程中,只起到排列双扇子形电子波的作用。带电粒子、面、体在随某动力的方向上运动时,它就会在运动力方向的垂直的方向上产生直线形两极,并且动力线右侧为正电极,左侧为负电极。产生的正负电极,起决定性作用的是动力方向。这个电子波就是以运动力为界分成左右两极的;对于面电,它必然是正负电不等的内外两层形成的,它在静止的瞬间,正负电层各向对方的反方向出现倾向趋势,自然形成正负电两个极,根据面积等分开,一半面积为正电极另一半面积为负电极;对于电体,必然是带电面有规律排列成的,同样按等体积分开两半,一半为正电极另一半为负电极。在导体上形成的电子波正负两极,是两极外区域电子吸正极,推负极,这两个同向力使电子波体电极,向正极方向运动形成电子波流,这就是处在磁力

线范围内的导体电流。总的来说点带电体是交于一点无数个方向的正负相邻电力线组成的点电体,它是不定方向的;线分正负向为线电极;面分正负向为面电极;体分正负向为体电极。

顺力运动的带电体产生电极

导体做切割磁力线运动的动力,起两个作用,第一使导体上的电子稍微动些,第二使导体上排列成的双扇形电子波,产生正负直线两极,并垂直于动力线方向,正电极在动力线右侧,负电极在动力线左侧。随飓风旋转的带正负电粒子,在旋转平面正负粒子上下分离,与旋转面为界面,若是反时针的旋转力,正粒子为时针表背面,负电粒子为时针表正。

五、环形电流磁场,磁场线方向怎么判断?

用安培定则(右手螺旋定则)判定。

1.将环形电流的任何一部分视为直线电流,根据直线电流的磁感线方向的方法判定。

2.将环形电流视为一个只有一匝的螺线管,先判断螺线管的南北极,进而判定磁感线方向。

六、磁场中的电流怎么求?

磁场强度H=B/(u0*ur)=I/(2*PI()*r)

公式表明:电流越大、距离导线的间距越近所得到的磁场强度则越强;相反,电流越小、距离导线的间距越远所得到的磁场强度则越弱。

其中:u0:是真空绝对磁导率ur:是相对磁导率(数值上等于介质绝对磁导率除以真空绝对磁导率的比值)I: 是长直导线中的电流大小PI():3.1415926r:距离长直导线轴心的距离。电荷在电场中受到的电场力是一定的,方向与该点的电场方向相同或者相反。

电流在磁场中某处所受的磁场力(安培力),与电流在磁场中放置的方向有关,当电流方向与磁场方向平行时,电流受的安培力最小,等于零;当电流方向与磁场方向垂直时,电流受的安培力最大。

让磁感线垂直穿过左手手心,四指指向电流方向,并使拇指与四指垂直,拇指所指方向即通电导体所受磁场力(安培力)方向。若磁感线不与电流方向垂直,则将磁感应强度分解到垂直于电流和平行于电流方向,对垂直于电流的分量应用上述左手定则即可,若平行,则不受安培力。可见,安培力垂直与磁感应强度和电流共同确定的平面。同向的电流相互吸引,反向的电流相互排斥。

七、直流电流的磁场?

直流电能产生磁场,直流电能产生均匀变化的电场,交流电产生变化的磁场。

如果使螺线管通电,,螺线管的每一匝都会产生磁场,磁场的方向“安培定则二”:用右手握住通电螺线管,让四指指向电流的方向,那么大拇指所指的那一端是通电螺线管的N极。

那么,在相邻的两匝之间的位置,由于磁场方向相反,总的磁场相抵消;而在螺线管内部和外部,每一匝线圈产生的磁场互相叠加起来,最终形成了磁场形状。

也可以看出,在螺线管外部的磁场形状和一块磁铁产生的磁场形状是相同的。而螺线管内部的磁场刚好与外部的磁场组成闭合的磁力线。

八、磁场对电流的作用实验?

电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力矩皆源于此。而现代理论则说明,磁力是电场力的相对论效应。

实验:电动机

电动机的转动是线圈通电产生磁场,磁场切割转子,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。

九、电流为何能产生磁场?

电流产生磁是因为电流的载流子(导线中一般为电子,溶液中一般为离子。)在运动,而这些载流子本身是有带电的,在周围会形成电场,由于载流子在定向运动,于是其周围空间中的电场会被其“拖”着一起运动,运动的电场会产生磁场,于是电流周围就会产生磁场。这是从微观到宏观的解释,但请注意一点:电流必须是电荷的定向移动才会形成电流。

十、切割磁场产生电流公式?

如果一个导线切割磁感线,会产生感应电动势,如果导线本身组成了回路,其中就会有电流通过。

电流大小可以通过,先对整个导线∫( V×B)*dL的积分计算出感应电动势大小,然后再除以回路的总电阻,计算出来。

顶一下
(0)
0%
踩一下
(0)
0%
相关评论
我要评论
用户名: 验证码:点击我更换图片